API Setup Guide

GLM-Image Team15 min readIntermediate

Integrating GLM-Image into your Python workflow unlocks powerful automation capabilities. This guide walks you through every step—from initial setup to production-ready implementation.

Prerequisites

  • Python 3.8 or higher
  • GLM-Image API key
  • requests library (or aiohttp for async)

Basic Implementation

import os import requests class GLMImageClient: def __init__(self, api_key): self.api_key = api_key self.base_url = "https://api.glm-image.com/v1" def generate(self, prompt, **kwargs): headers = {'Authorization': f'Bearer {self.api_key}'} payload = {'prompt': prompt, 'width': 1024, 'height': 1024} response = requests.post(f"{self.base_url}/generate", json=payload, headers=headers) return response.json()['url'] # Usage client = GLMImageClient("your_api_key") url = client.generate("A sunset over mountains")

Advanced Features

Batch Processing

def generate_batch(prompts, max_workers=3): from concurrent.futures import ThreadPoolExecutor with ThreadPoolExecutor(max_workers=max_workers) as executor: results = list(executor.map(client.generate, prompts)) return results # Process 5 prompts prompts = ["A dragon", "A castle", "A knight", "A forest", "A sword"] results = generate_batch(prompts)

Integration Patterns

Flask Web App

from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/api/generate', methods=['POST']) def generate_image(): data = request.json prompt = data.get('prompt') url = client.generate(prompt) return jsonify({'url': url})

Production Checklist

Store API keys securely (environment variables)
Implement rate limiting (max 10 req/sec)
Add comprehensive error handling
Monitor API usage and costs